Galois Realizations of Classical Groups and the Middle Convolution

نویسنده

  • Michael Dettweiler
چکیده

Up to date, the middle convolution is the most powerful tool for realizing classical groups as Galois groups over Q(t). We study the middle convolution of local systems on the punctured affine line in the setting of singular cohomology and in the setting of étale cohomology. We derive a formula to compute the topological monodromy of the middle convolution in the general case and use it to deduce some irreducibility criteria. Then we give a geometric interpretation of the middle convolution in the étale setting. This geometric approach to the convolution and the theory of Hecke characters yields information on the occurring arithmetic determinants. We employ these methods to realize special linear groups regularly as Galois groups over Q(t). The geometric theory of the middle convolution can also be used to compute Frobenius elements for many of the known Galois realizations of classical groups. We illustrate this by investigating specializations of PGL2(Fl)extensions of Q(t) which are associated to a family of K3-surfaces of Picard number 19.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of relative motives with interesting étale realization using the middle convolution

We study the middle convolution of local systems on the punctured affine line in the singular and the étale case. We give a motivic interpretation of the middle convolution which yields information on the occurring determinants. Finally, we use these methods to realize special linear groups regularly as Galois groups over Q(t). Introduction If K is a field, then we set GK := Gal(K/K), where K d...

متن کامل

On the middle convolution of local systems . With an Appendix

We study the middle convolution of local systems in the setting of singular and étale cohomology. We give a motivic interpretation of the middle convolution in the étale case and prove an independence-of-`-result which yields a description of the determinant. We employ these methods to realize special linear groups regularly as Galois groups over Q(t). In an appendix to this article, written jo...

متن کامل

An Algorithm of Katz and its Application to the Inverse Galois Problem

In this paper we present a new and elementary approach for proving the main results of Katz (1996) using the Jordan-Pochhammer matrices of Takano and Bannai (1976) and Haraoka (1994). We nd an explicit version of the middle convolution of Katz (1996) that connects certain tuples of matrices in linear groups. Our approach is valid for elds of any characteristic and it can be shown that this oper...

متن کامل

M ar 2 00 6 AUTOMATIC REALIZATIONS OF GALOIS GROUPS WITH CYCLIC QUOTIENT OF ORDER p n

We establish automatic realizations of Galois groups among groups M ⋊ G, where G is a cyclic group of order p for a prime p and M is a quotient of the group ring Fp[G]. The fundamental problem in inverse Galois theory is to determine, for a given field F and a given profinite group G, whether there exists a Galois extension K/F such that Gal(K/F ) is isomorphic to G. A natural sort of reduction...

متن کامل

Rigid local systems and motives of type G2

Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s standard conjectures, the existence of motives with motivic Galois group of type G2 can be deduced, gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006